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SUMMARY

This paper details an exact two-equation procedure to generate pressure, temperature and mass and mole
fractions as well as their thermodynamic and Jacobian partial derivatives for ®ve-species neutral equilibrium air.
Applicable for arbitrary forms of equilibrium constants and especially designed for explicit and implicit CFD
algorithms, the procedure algebraically reduces to two equations the six-equation thermodynamic system
comprising the equations for internal energy, law of mass action and conservation of species mass and ratio of
oxygen and nitrogen nuclei. This exact algebraic reduction explicitly expresses four mass fractions in terms of
nitric oxide mass fraction and temperature, which are then determined through a rapidly converging numerical
solution of the internal energy and nitric oxide mass action equations. The procedure then exactly determines the
partial derivatives of pressure, temperature and mass fractions analytically. The mathematical formulation also
introduces a convenient system non-dimensionalization that makes the procedure uniformly applicable to ¯ows
ranging from shock tube ¯ows with zero initial velocity to aerothermodynamic ¯ows with supersonic=hypersonic
freestream Mach numbers. Over a wide range of density and internal energy the predicted distributions of mole
fractions for the model ®ve species agree with independent published results, while pressure and temperature as
well as their partial derivatives remain continuous, smooth and physically meaningful. # 1997 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

For speci®ed initial and boundary conditions for the Euler on Navier±Stokes conservation law

system, the chemical dissociations within reacting air absorb energy and thus lead to lower static

temperatures, higher static densities and different shock wave positions in comparison with perfect-

air predictions. These effects must therefore be modelled accurately for a reliable CFD simulation of

aerothermodynamic and high-temperature ¯ows.

Either curve ®ts or solutions of the chemical equilibrium thermodynamics equations can be used to

model the thermodynamic properties of reacting equilibrium air. Tannehill and Mugge1 have used

their curve ®ts for time-dependent CFD calculations. Liou et al.2 used Gordon and McBride's
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procedure to generate equilibrium air thermodynamic properties that were then curve ®tted to

simulate numerically high-temperature shock tube ¯ows. As another representative example, Prabhu

et al.3 and Yee et al.4 use the Srinivasan curve ®ts for their numerical predictions of inviscid and

viscous hypersonic ¯ows. If a set of curve ®ts in turn depends on exponential correlations for the

equilibrium constants, then when improved correlations become available, the curve ®ts will have to

be revised. Furthermore, while many curve ®ts supply reliable values for pressure, temperature and

other thermodynamic variables, the accuracy of the thermodynamic derivatives of these variables

may be insuf®cient in some curve ®ts. For several CFD simulations of hypersonic ¯ows, for instance,

Yee et al.4 report a degradation in solution accuracy and stability as triggered by discontinuities in the

curve-®tted thermodynamic derivatives.

As an alternative to curve-®tting methods, Park,5 Park and Yoon6 and Desideri et al.7 use solutions

of classical chemical non-equilibrium and equilibrium thermodynamic systems in their CFD methods

and report accurate solutions for several hypersonic blunt body ¯ows. With these systems the partial

derivatives of pressure and temperature can then be analytically determined by differentiating the

thermodynamic equations. The results in these references, therefore, bear out the feasibility of

coupling at each grid point the solution of a chemical equilibrium thermodynamic system with Euler

and Navier±Stokes CFD algorithms.

This paper presents a computationally ef®cient solution procedure of an exact thermodynamic

model for ®ve-species, electrically neutral and chemically reacting air. The model involves an

explicit pressure equation of state coupled to a non-linear system of six chemical equilibrium

thermodynamic equations for ®ve mass fractions and temperature. The resulting equations then revert

to the familiar perfect gas expressions in the appropriate temperature and pressure ranges. The

developed solution procedure remains valid for arbitrary forms of the equilibrium constants and,

without introducing spurious solutions, succeeds in algebraically reducing this six-equation system to

a two-equation system for nitric oxide mass fraction and temperature, which are then numerically

determined through a rapidly converging Newton method solution. The remaining mass fractions and

pressure are then explicitly calculated using this solution, while the thermodynamic and Jacobian

derivatives of pressure and temperature are exactly determined through an analytical differentiation

of the chemical equilibrium equations in the model.

Classical equilibrium thermodynamics for homogeneous ¯uids8,9 shows that pressure and

temperature depend on only two other thermodynamic variables. For CFD applications the selected

two thermodynamic variables are density and mass-speci®c internal energy, since these variables are

directly available from the continuity and volume-speci®c total energy equations in the Euler and

Navier±Stokes conservation law systems. In the equilibrium thermodynamic system, therefore,

density and mass-speci®c internal energy become assigned parameters at each grid point.

The neutral air in the procedure encompasses perfect air and consists of a mixture of ®ve non-

ionized species: nitric oxide, NO, and molecular as well as atomic oxygen, O2 and O, and nitrogen,

N2 and N. The choice of neutral air is justi®ed by the independent Reference 10, which con®rm that

only negligible traces of electrons and hence ionic species exist within equilibrium air for

temperatures below 8000 K. Each species independently behaves as a perfect gas for which the

familiar perfect gas law applies. The mixture pressure equation of state is then obtained through

Dalton's law as a sum of species partial pressures, which results in density and temperature

multiplying a linear combination of mass fractions and molecular masses. The mixture mass-speci®c

internal energy results from the sum of formation energy, translational and rotational kinetic energies and

potential vibrational energy, all at the single equilibrium static temperature. The vibrational potential

energy term in this equation relies upon the rigid rotor harmonic oscillator model,8,9 which implies the

perfectgasequationofstate foreachspecies,which in turn isconsistentwithDalton's law. Twoadditional

equationscorrespondto theconservationofspeciesmassandthemoleratioofoxygenandnitrogennuclei.
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The law of mass action provides the completing three equations, which express the equilibrium of any

three linearly independent chemical reactions for the ®ve species in equilibrium air.

For increased versatility the equilibrium thermodynamic equations are made non-dimensional by

way of a convenient single reference state that makes the procedure uniformly applicable to ¯ows

ranging from shock tube ¯ows with zero initial velocity to aerothermodynamic ¯ows with

supersonic=hypersonic freestream Mach numbers. Over a wide range of density and internal energy,

corresponding to a temperature range of 8000 K and pressure range corresponding to an increase in

altitude of over 30,000 m (100,000 ft) above sea level, the procedure converges in two or three

iterations and generates distributions of mole fractions for the model ®ve species that agree with

independent published results, while pressure and temperature as well as their partial derivatives

remain continuous, smooth and physically meaningful.

The remainder of this paper is organized in nine sections and ®ve appendices. Section 2 presents

the governing Euler and Navier±Stokes conservation law systems, along with a reference

thermochemical equilibrium pressure equation of state and temperature equation, while Section 3

summarizes results for a perfect gas to simplify discussion of results in Section 9 and introduce

principles, variables and constants needed for the more general chemical equilibrium model. Section

4 is devoted to the development of the equilibrium air seven-equation thermodynamic system. The

reference variables and corresponding non-dimensional system are determined in Section 5, while the

algebraic reduction and numerical solution are detailed in Sections 6 and 7. The analytical

determination of the partial derivatives of pressure and temperature is then presented in Section 8,

while Section 9 documents the computational results. Concluding remarks are made in Section 10.

Finally, Appendices I±V detail all the thermodynamic data and Jacobian partial derivatives for

immediate reproduction of the procedure and results.

2. NAVIER±STOKES CONSERVATION LAW SYSTEM, PRESSURE EQUATION OF STATE

AND TEMPERATURE EQUATION

For arbitrary equilibrium ¯uids and with implied summation on repeated indices the multi-

dimensional time-dependent governing Navier±Stokes equations in Cartesian conservation law

system form are written as

@q

@t
� @fj�q�

@xj

� @f
v

j

@xj

: �1�

The Euler equations can then be obtained from (1) by setting the right-hand side to zero identically.

In (1), 14 j4 n, where n denotes the number of spatial dimensions, 14 n4 3, while

x � �x1; x2; x3� 2 O � Rn and t 2 �to;1� � R where R denotes the ®eld of real numbers and O
indicates the solution domain.

The state variable q and the inviscid and viscous ¯ux components fj and f vj are de®ned as

q �

r

m1

m2

m3

E

8>>>>>>><>>>>>>>:
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: �2�
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In q and fj the dependent variable r denotes the static density, E indicates the volume-speci®c total

energy and mj � ruj corresponds to the jth component of the volume-speci®c linear momentum m,

with uj the corresponding component of the Eulerian velocity. The inviscid ¯ux component fj then

depends on q as well as on the static pressure p, with di
j; 14 i4 n, de®ning the Kronecker delta,

while the viscous ¯ux component f vj depends on uj as well as on the deviatoric stress tensor �tij� and

the Fourier heat ¯ux component qf
j � ÿk�T �@T=@xj, in terms of static temperature T, with k�T �

indicating the thermal conductivity.

For mathematical closure, therefore, the Euler and Navier±Stokes equations require an equation of

state (EOS) relating the pressure p to the dependent variable q. The Navier±Stokes system must be

further augmented with a constitutive relation for �tij�, an expression for k�T � and a temperature

equation (TE), independent of the EOS, relating T to q. Implicit Euler and Navier±Stokes CFD

algorithms additionally require the Jacobian partial derivatives of p with respect to q and an implicit

Navier±Stokes CFD algorithm also requires the Jacobian partial derivatives of T with respect to q.

Functionally cast, the EOS and TE are

p � p�q�; T � T �q�: �3�
For a homogeneous ¯uid in thermal and chemical equilibrium, thermodynamics stipulates p and T as

each dependent upon two other thermodynamic variables according to

p � p�r; e�; T � T �r; e�; �4�
where e denotes the mass-speci®c internal energy. For a given q this energy can be obtained from E,

which is be de®nition the sum of volume-speci®c internal and kinetic energies. As a result,

E � re� 1

2r
Pn
i�1

mimi ) re � E ÿ 1

2r
Pn
i�1

mimi: �5�

The functions that respectively relate the pressure p and temperature T to q are thus

p � p�r; e�q�� � p�r; e�r;m;E��; T � T �r; e�q�� � T �r; e�r;m;E��: �6�
Given q, therefore, p and T as well as their important partial derivatives with respect to q are obtained

from (6) and the thermodynamic partial derivatives of (6) with respect to r and e. The following

sections present and solve the equations that lead to (6) for a neutral mixture of ®ve species.

3. PERFECT GAS PRESSURE AND TEMPERATURE EQUATIONS

This section uses the well-known perfect gas EOS and TE to introduce the principles, variables and

constants needed for the EOS and TE of an equilibrium multispecies reacting gas and to simplify the

discussion of results in Section 9. From the works of Boyle, Mariotte, Charles and Gay-Lussac and

the experiment of Joule respectively the EOS and TE for a perfect gas are

p � RrT ; re � rcvT ; �7�
where R and cv respectively denote the speci®c (not universal) gas constant and constant-volume

speci®c heat. For a perfect gas, R and cv are constant and related by Mayer's equality cp ÿ cv � R,

where cp indicates the constant-pressure speci®c heat. Through the ratio g � cp=cv, Mayer's equality

then becomes gÿ 1 � R=cv. From this equality and (5) the elimination of T from (7) leads to the

perfect gas EOS and TE forms

p � �gÿ 1�re � �gÿ 1� E ÿ 1

2r
Pn
i�1

mimi

� �
; T � p

rr
; �8�
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two well-known expressions in CFD.

Perfect air is a mixture of two diatomic thermally and calori®cally perfect gases: oxygen, O2, and

nitrogen, N2, with molecular masses MO2
and MN2

. In terms of the universal gas constant r (see

Appendix I) the EOS for this perfect air is

p � rT
r

Mair

; �9�

where Mair denotes the molecular mass of air. This molecular mass is determined in terms of the

molecular masses of O2 and N2 by way of Dalton's pressure law. This law stipulates that the overall

mixture pressure results from the sum of partial pressure of the component gases and is thus

expressed as

p � pO2
� pN2

� rO2
T

r

MO2

� rN2
T

r

MN2

� rrT
YO2

MO2

� YN2

MN2

 !
; �10�

where rO2
and rN2

denote the partial densities of O2 and N2 respectively and YO2
� rO2

=r and

YN2
� rN2

=r indicate the corresponding mass fractions. Since the right-hand sides (RHSs) of the EOS

in (9) and (10) are equal to one another, the associated expression for Mair becomes

Mair �
YO2

MO2

� YN2

MN2

 !ÿ1

: �11�

Similar to Dalton's law, the rule for determining the mixture TE in terms of the volume-speci®c

internal energy re involves the sum of volume-speci®c internal energies of the component species

according to

re � rO2
eO2
� rN2

eN2
� rO2

cvO2
T � rN2

cvN2
T � rT �YO2

cvO2
� YN2

cvN2
�: �12�

Since the RHSs of the TEs in (7) and (12) equal one another, the expression for the mixture constant-

volume speci®c heat becomes

cvair
� YO2

cvO2
� YN2

cvN2
; �13�

which is analogous to (11).

Expressions (9)±(13) thus show that the mixture pressure and temperature as well as the molecular

mass and speci®c heat are directly determined for a given mixture density r and mass-speci®c

internal energy e when the mass fractions are known. In particular, a formulation in terms of mass

fractions is convenient because the corresponding expressions for pressure and internal energy are

linear with respect to the mass fractions, unlike a formulation in terms of mole fractions. The mass

fractions can then be obtained either from additional chemical equilibrium equations or from

chemical data for the corresponding mole fractions.

The mole fraction X of a species in a mixture is the ratio of species moles and total number of

mixture moles. It turns out that for any chemical species that behaves as a perfect gas, X can also be

named a `pressure fraction', with an expression similar to that of the mass fraction, because from (9)

and (10) the ratio of partial pressure and mixture pressure equals X. For O2 in perfect or equilibrium

reacting air, for instance, the corresponding mole fraction is expressed as XO2
�nO2

=n, where nO2

and n respectively denote the numbers of moles of O2 and air. Considering that rO2
�nO2

MO2
=v,
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where v denotes the volume occupied by the mixture, the identity of mole and pressure fractions is

then obtained as

pO2

p
� rO2

=MO2

r=M
� �nO2

MO2
=v�=MO2

�nM=v�=M �nO2

n
� XO2

YO2
MO2

M
� XO2

; �14�

where M denotes the molecular mass of reacting or non-reacting air.

The mole fractions then lead to the corresponding mass fractions as follows. From (14) and the

de®nitions of air molecular mass, mass fraction and mole fraction the relations between the mass and

mole fractions for the perfect air species are

XO2
� YO2

=MO2

YO2
=MO2

� YN2
=MN2

; XN2
� YN2

=MN2

YO2
=MO2

� YN2
=MN2

: �15�

For the well-known perfect air values XO2
� 0�21 and XN2

� 0�79 the corresponding mass fractions

from (15) and associated perfect air molecular mass Mair, gas constant R and constant-volume speci®c

heat cvair
are

YO2
� 0�232917001 . . . ; YN2

� 0�767008299 . . . ; �16�

Mair � �XO2
MO2
� XN2

MN2
�=�YO2

� YN2
� 28�85039719 . . . kg kg-molÿ1; �17�

R � 288�176275191 . . . J kgÿ1 Kÿ1; cvair
� 115�270510076 . . . J kgÿ1 Kÿ1: �18�

For reacting air the mass fractions are no longer independent of temperature and can be determined

by way of an equilibrium thermodynamic system as detailed in the following sections.

4. REACTING AIR EQUATIONS OF STATE

The equations in this section will represent equilibrium, electrically neutral and chemically reacting

air. This type of air encompasses perfect air and consists of a mixture of ®ve non-ionized species:

nitric oxide, NO, and molecular as well as atomic oxygen, O2 and O, and nitrogen, N2 and N.

In the following, subscript i; 14 i4 5, indicates the ®ve ordered species O, N, NO, O2 and N2,

each with its own molecular mass Mi (see Appendix I) as well as partial density ri and corresponding

mass fraction Yi � ri=r, with r the mixture density. Each species i independently behaves as a

perfect gas with individual EOS

pi � rT
ri

Mi

: �19�

For a mixture of perfect species, therefore, Dalton's law leads to the mixture pressure equation of

state as

p �P5
i�1

pi � rrT
P5
i�1

Yi

Mi

; �20�

which generalizes (9).
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The mixture mass-speci®c internal energy e results from the sum of formation energy, translational

and rotational kinetic energies and potential vibrational energy, all at the equilibrium static

temperature T, in the form

e � T
P5
i�1

cvi
Yi �

P5
i�3

Yiryv
i =Mi

exp�yv
i =T � ÿ 1

�P3
i�1

Yih
0
i ; �21�

which generalizes the TE in (7). The second term on the RHS of (21) relies upon the rigid rotor

harmonic oscillator model,8,9 which implies the perfect gas equation of state for each species, which

in turn is consistent with Dalton's pressure-mixing rule. Therefore the contributions from the ground

electronic state are properly modelled for N2, O2 and NO. Certainly, these molecules are known to

behave like anharmonic oscillators, and considering that the contribution to vibrational heat capacity

from the ®rst anharmonicity term alone is about (4, 7, 5)% at 5000 K and about (7, 14, 10)% at

10,000 K, equation (21) is accurate for T<10,000 K. In (21), cvi
denotes the translational=rotational

mode contributions to the ith-species constant-volume speci®c heat, while yv
i and h0

i respectively are

the vibrational temperature and formation enthalpy at 0 K; speci®c numerical data for these quantities

appear in Appendix I.

Considering that both r and e are available at each grid point from the conservation law system (1),

(5), equations (20) and (21) will directly allow the determination of static temperature T and pressure

p for the given thermodynamic state �r; e�. Fundamental to this determination are the ®ve variable

mass fractions Yi; 14 i4 5, for which ®ve additional equations are needed.

One equation corresponds to the conservation of species mass8 in the form
P5

i�1 ri � r, which

results in the mass fraction conservation equation

P5
i�1

Yi � 1: �22�

Another equation corresponds to the conservation of the mole proportion 21=79 between oxygen and

nitrogen nuclei. In terms of mole fractions the conservation of this proportion is expressed as

79�X1 � X3 � 2X4� � 21�X2 � X3 � 2X5�, which, by virtue of expressions similar to (14) for the

generic species i, corresponds to the following equation in terms of mass fractions:

1

21

Yi

Mi

� Y3

M3

� 2
Y4

M4

� �
� 1

79

Y2

M2

� Y3

M3

� 2
Y5

M5

� �
: �23�

The law of mass action provides three further equations, which express the equilibrium of any

three linearly independent chemical reactions for the ®ve species in equilibrium air. That the number

nMA of linearly independent mass action equations is three for the subject ®ve-species air follows

from the simple rule nMA� (number of species)7 (number of elements)� 3.8

The following chemical reactions, two dissociations and one recombination, lead to computa-

tionally convenient mass action equations:

O2
! 2O; N2

! 2N; O2 � N2
! 2NO: �24�

In terms of partial pressures, the mass action equations for reactions (24) are

p2
1

p4

� k1�T �;
p2

2

p5

� k2�T �;
p2

3

p4p5

� k3�T �; �25�
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and according to statistical thermodynamics,8,9 the partial-pressure equilibrium functions ki�T � only

depend on the static temperature T and the stoichiometric coef®cients in (24) become the exponents

in (25). Replacing the partial pressure pi using (19) yields the mass-fraction law of mass action as

Y 2
1

Y4

� M 2
1

M4

k1�T �
rTr

� M 2
1

M4

K1�T �
r

; �26�

Y 2
2

Y5

� M 2
2

M5

k2�T �
rTr

� M 2
2

M5

K2�T �
r

; �27�

Y 2
3

Y4Y5

� M2
3

M4M5

K3�T �; �28�

where Ki�T �; 14 i4 3, represent the mass fraction equilibrium functions, which are traditionally

cast as exponential relations,5,6,9,10, as exempli®ed in Appendix II. According to the dimensions of

terms in (26)±(28), the SI units of K1�T � and K2�T � are kg-mol71 kg m73, whereas K3�T � remains

dimensionless. The following analytical developments will remain valid for any form of these

equilibrium functions.

5. NON-DIMENSIONAL REACTING AIR EQUATIONS OF STATE

For increased versatility the system of equations (20)±(23), (26)±(28) is made non-dimensional by

way of a convenient single reference state that makes this system uniformly applicable to ¯ows

ranging from ¯ows with a speci®ed ®xed initial state with zero velocity, typical of shock tube ¯ows,

to ¯ows with an identi®able freestream state, typical of supersonic=hypersonic aerothermodynamic

¯ows.

For an available freestream state with representative constant pressure p1, temperature T1, density

r1 and Mach number m1 the reference molecular mass, density, mass-speci®c energy (speed

squared), pressure and temperature are expressed as

Ma �
rr1T1

p1
; rr �

p1
�r=Ma�T1

;

U 2
r � gm2

1�r=Ma�T1; pr � rrU
2
r � gm2

1p1;

Tr �
pr

rr�r=Ma�
� U2

r

r=Ma

� gM 2
1T1;

�29�

where g � 1�4, the constant ratio of perfect air speci®c heats, is introduced in (29) so that Ur becomes

the ¯ow speed when the corresponding freestream gas is perfect air. If r1; p1 and T1 already satisfy

the perfect gas law, then the reference molecular mass Ma corresponds to the air molecular mass;

otherwise, it simply represents a scaling factor by which to divide the species molecular masses.

Either way, rr � r1 with this particular choice. With de®nitions (29) the reference pressure, density

and temperature then satisfy the perfect gas law and for high Mach numbers they constitute sizable

constants that conveniently scale down the large pressure, density and temperature across the

stagnation-streamline normal section of supersonic and hypersonic aerodynamic-¯ow bow shocks.
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For a typical shock-tube initial state with representative constant pressure p1, temperature T1 and

density r1 the reference variables are

Ma �
rr1T1

p1
; rr �

p1
�r=Ma�T1

;

U 2
r � pr=rr � �r=Ma�T1 � gm2

r �r=Ma�T1; gm2
r � 1;

pr � p1 � gm2
r p1; Tr � T1 � gm2

r T1

�30�

and, as before, rr � r1 while p1; r1 and T1 satisfy the perfect gas law. Importantly, for gm2
r � 1,

hence m2
r � 1=g, this reference state formally coincides with (29). Therefore setting mr equal to

either m1 or 1=g, depending on the ¯ow class, leads to a unique set of non-dimensional equations of

state for both reference sets (29) and (30).

Using the reference states (29) or (30), the non-dimensional density, mass-speci®c internal energy,

pressure and temperature are then expressed as

~r � r
rr

; ~e � e
U 2

r

� e

gm2
r �r=Ma�T1

; ~p � p

pr

; ~T � T

Rr

� T

gm2
r T1

: �31�

The corresponding non-dimensional pressure equation is

~p � rrTrrTr

rrTrpr

P5
i�1

yi

Mi

� rrT

�r=Ma�rrTr

P5
i�1

Yi

Mi

� ~r ~T
P5
i�1

Yi

Mi=Ma

� ~r ~T
P5
i�1

Yi

~Mi

: �32�

Hence the universal gas constant r no longer appears in this non-dimensional equation of state. The

non-dimensional energy equation is

~e � T

gm2
r �r=Ma�T1

P5
i�1

cvi
Yi �

P5
i�3

Yiryv
i =Mi

�gm2
r �r=Ma�T1��exp�yv

i =T � ÿ 1� �
P3
i�1

Yi

h0
i

gm2
r �r=Ma�T1

;

�33�

which as simpli®ed as

~e � ~T
P5
i�1

~cvi
Yi �

P5
iÿ3

Yi
~yv

i = ~Mi

exp�~yv
i = ~T � ÿ 1

�P3
i�1

Yi
~h0

i �34�

and the universal gas constant r no longer multiplies any term in (34). Furthermore, as indicated in

Appendix I, the magnitudes of the non-dimensional speci®c heat ~cvi
, characteristic vibrational

temperature ~yv
i and formation enthalpy ~h0

i decrease with respect to their dimensional values.

Since the mass fractions Yi are already dimensionless variables, the non-dimensional species

conservation equations are

P5
i�1

Yi � 1;
1

21

Y1

~M1

� Y3

~M3

� 2
Y4

~M4

 !
� 1

79

Y2

~M2

� Y3

~M3

� 2
Y5

~M5

 !
: �35�
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The non-dimensional mass action equations are then

Y 2
1

Y4

�
~M2

1

~M4

K1� ~T �
~r�rr=Ma�

�
~M 2

1

~M4

~K1� ~T �
~r

; �36�

Y 2
2

Y5

�
~M2

2

~M5

K2� ~T �
~r�rr=Ma�

�
~M 2

2

~M5

~K2� ~T �
~r

; �37�

Y 2
3

Y4Y5

�
~M 2

3

~M4
~M5

~K3� ~T �; �38�

where ~Kj; 14 j4 3, denote the non-dimensional equilibrium functions, as exempli®ed in Appendix

II.

6. ALGEBRAIC REDUCTION

Grouped below for convenience, the non-dimensional equations of state are

~p � ~p ~T
P5
i�1

Yi

~Mi

; �39�

~e � ~T
P5
i�1

~cvi
Yi �

P5
i�3

Yi
~yv

i = ~Mi

exp�~yv
i = ~T � ÿ 1

�P3
i�1

Yi
~h0

i ; �40�

P5
i�1

Yi � 1; �41�

1

21

Y1

~M1

� Y3

~M3

� 2
Y4

~M4

 !
� 1

79

Y2

~M2

� Y3

~M3

� 2
Y5

~M5

 !
; �42�

Y 2
1

Y4

�
~M 2

1

~M4

~K1� ~T �
~r
� ~M 2

1 C1; �43�

Y 2
2

Y5

�
~M 2

2

~M5

~K2� ~T �
~r
� ~M 2

2 C2; �44�

Y 2
3

Y4Y5

�
~M 2

3

~M4
~M5

~K3� ~T � � ~M 2
3 C3; �45�

where Ci � ~Ki� ~T �=� ~r ~Mi�3�, i � 1; 2, and C3 � ~K3� ~T �=� ~M4
~M5�. In the sequel the tilde is dropped from

the system variables for simplicity.

The ®ve mass fractions Yi; 14 i4 5, and static temperature T can then be theoretically obtained

by solving the non-linear system of the last six equations given above and practically determined

through a numerical iterative procedure, which for CFD applications would become a daunting

proposition if such a 666 system required even a few iterations at each of hundreds of thousands of

grid points. In the following developments, however, the four variable mass fractions

Yi; i � 1; 2; 3; 4; 5, of the six variables in this 666 system are explicitly expressed algebraically

in terms of only two variables, temperature T and nitric oxide mass fraction Y3, and the complete

solution of system (39)±(45) is obtained from the solution for these two variables of a far less
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daunting 262 system. The selection of the speci®c relations leading to this system was predicated on

the elimination of the potential spurious solutions that can be introduced in the algebraic

manipulation of non-linear equations involving raising of powers. This criterion ensured that the

resulting equations only possess a physically meaningful solution.

The two mass fractions Y1 and Y2 in the two linear equations (41) and (42) can be explicitly solved

for in terms of Y3; Y4 and Y5. The expression for Y1 results by summing (42) to the product of (41) and

1=�79M2�, while that for Y2 results by summing (42) to the products of (41) and ÿ1=(21M1). This

sequence of operations yields the expressions

Y1 �
0�21M4

Mair

ÿM1

M3

Y3 ÿ Y4; �46�

Y2 �
0�79M5

Mair

ÿM2

M3

Y3 ÿ Y5; �47�

which identically revert to (15) for vanishing Y1; Y2 and Y3, where Mair is the constant perfect air

molecular mass (17). For conciseness these two expressions are then cast as

Y1 � a10 ÿ a13Y3 ÿ Y4; �48�
Y2 � a20 ÿ a23Y3 ÿ Y5; �49�

where the constants a10; a13; a20 and a23 follow from inspection of (46) and (47).

The additional explicit relations for Y4 and Y5 result from inserting (48) and (49) into (43) and (44)

respectively. This operation yields the quadratic equations

Y 2
4 ÿ 2 a10 ÿ a13Y3 �

M2
1 C1

2

� �
Y4 � �a10 ÿ a13Y3�2 � 0; �50�

Y 2
5 ÿ 2 a20 ÿ a23Y3 �

M2
2 C2

2

� �
Y5 � �a20 ÿ a23Y3�2 � 0; �51�

which remains valid for any equilibrium function Ki�T �; i � 1; 2; 3, and intrinsically depend upon Y3.

Of the two mathematical solutions for each of (50) and (51) the solution devoid of physical

signi®cance is discarded and the physically meaningful solutions are then established as

Y4 � a10 ÿ a13Y3 �
M 2

1 C1

2
ÿ M 2

1 C1 a10 ÿ a13Y3 �
M 2

1 C1

4

� �� �1=2

; �52�

Y5 � a20 ÿ a23Y3 �
M 2

2 C2

2
ÿ M 2

2 C2 a20 ÿ a23Y
3
�M 2

2 C2

4

� �� �1=2

: �53�

According to the algebraic sign of the coef®cients in (52) and (53), Y4 and Y5 are positive if so are the

expressions ai0 ÿ ai3Y13; i � 1; 2, since C1 and C2 are intrinsically positive. Given the de®nition of

the coef®cients a10; a13; a20 and a23 in (48) and (49), this condition is always meet, since Y3 stays

below one. Furthermore, for increasing temperature both Y4 and Y5 from (52) and (53) consistently

approach zero, as physically correct, owing to the monotonic increase in C1 and C2. Finally, at lower

temperatures, C1;C2 and Y3 approach zero. Hence Y4 and Y5 from (52) and (53) converge to their

respective perfect gas values, while from (46) and (47) both Y1 and Y2 vanish.

By virtue of (52) and (53), Y4 and Y5 are functionally expressed as

Y4 � Y4�Y3�r; e�; T �r; e�; r�; Y5 � Y5�Y3�r; e�; T �r; e�; r� �54�
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and the functional relations for Y1 and Y2 from (46) and (47) are then

Y1 � Y1�Y3�r; e�; Y4�Y3�r; e�; T �r; e�; r��; Y2 � Y2�Y3�r; e�; Y5�Y3
�r; e�; T �r; e�; r��; �55�

which show that these four mass fractions explicitly depend upon r and e as well as upon Y3 and T.

For the thermodynamic state �r; e�, existing at each grid node from (5) and the continuity and energy

conservation equations in (1), and associated Y3 and T, therefore, both Y4 and Y5 are directly obtained

from (52) and (53), which then allows determining both Y1 and Y2 from (48) and (49). The

corresponding pressure is then determined using (39). A complete solution for the non-linear six-

equation system (40)±(45) is thus obtained when both Y3 and T are determined.

7. TWO-EQUATION SYSTEM FOR Y3 AND T

The two equations that remain to be solved for system (40)±(45) are the nitric oxide mass action

equation (45) and the mass-speci®c internal energy equation (40). The solution for T and Y3 is thus

determined by solving the two-equation system

f1�Y3; T � � Y3 ÿM3�Y4Y5C3�1=2 � 0; �56�

f2�Y3; T � � eÿ T
P5
i�1

cvi
Yi ÿ

P5
i�3

Yiy
v
i =Mi

exp�yv
i =T � ÿ 1

ÿP3
i�1

Yih
0
i � 0; �57�

with Yi; i � 1; 2; 3; 4; 5, expressed via (48)±(51). For a positive thermodynamic state �r; e� each term

in (56) and (57), with the exception of e, is a non-positive monotone function of temperature T and

nitric oxide mass fraction Y3. Furthermore, the square root expression in (56) is also a non-positive

monotone function of T. Therefore a solution of system (56), (57) with positive Y3 and T exists and is

unique. This solution is numerically determined by solving this system through Newton's method.

7.1. Numerical solution

In system (56), (57) the thermodynamic state �r; e� is known at each grid point. For the auxiliary

variable Q � fY3; TgT, therefore, this system is cast as

F�r; e;Q� � F�r; e; Y3; T � � f1�r; e; Y3; T �
f2�r; e; Y3; T �

� �
� 0: �58�

The Newton algorithm to solve (58) is

Qs�1 � Qs ÿ @F

@Q

� �s

r;e

" #ÿ1

fFsg; �59�

where superscript s denotes the iteration index. The initial estimate Q0 at a grid node can coincide

with the value of Q at an adjacent grid point where this system has already been solved. If no solution

for Q is available at an adjacent node, as is typical when system (56), (57) is solved at the ®rst grid

node, then an initial estimate for Q0 can correspond to low T and consequently Y3 � 0. These two

selections are consistent with each other, because C3; Y1 and Y2 approach zero at lower temperatures,

which leads to a vanishing Y3 as a solution of (56). Under the same low-temperature conditions,

equations (56) and (58) then asymptotically converge to the corresponding perfect gas expressions.

With symmetrized f1 and f2 with respect to the f-axis, i.e. fi�ÿY3;ÿT � � fi�Y3; T � and

f2�ÿY3;ÿT � � f2�Y3; T �, the absolute values of both Y s
3 and Ts at the end of each iteration will
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equally lead to the solution of (56) and (57), as also indicated in Reference 11 for a hydrocarbon

equilibrium thermodynamic system. Iteration (59) is cast in closed form, since the 262 Jacobian is

analytically determined in the following section. Hence evaluating (59) is relatively inexpensive,

leads to a quadratically convergent process and directly yields Y3 and T.

7.2. Iteration partial derivatives

For a given ¯ow state q � fr;m;EgT and hence for a ®xed �r; e�, system (56), (57) is functionally

cast as

f1�r; Y3; Y4�Y3T ; r�; Y5�Y3; T ; r�; T � � 0; �60�

f2�e; T ; Y1�Y3; Y4�Y3; T ; r��; Y2�Y3; Y5�Y3; T ; r��; Y3; Y4�Y3; T ; r�; Y5�Y3; T ; r�� � 0: �61�
Therefore the partial derivatives in the Jacobian matrix in (59) are expressed as

@F

@Q

� �
q

" #
� �@f1=@Y3�q;T ; �@f1=@T �q;Y3�@f2=@Y3�q;T ; �@f2=@T �q;Y3

� �
; �62�

where subscripts denote the variables held constant in the partial differentiation. The partial

derivatives in (62) are thus determined by application of the chain rule to (56) and (57), which yields

the unabridged forms

@f1
@Y3

� �
q;T

� @f1
@Y3

� �
q;Y4;Y5;T

� @f1
@Y4

� �
q;Y3;Y5;T

@Y4

@Y3

� �
q;T

� @f1
@Y5

� �
q;Y3;Y4;T

@Y5

@Y3

� �
q;T

�63�

@f1
@T

� �
q;Y3

� @f1
@T

� �
q;Y4;Y5;Y3

� @f1
@Y4

� �
q;Y3;Y5;T

@Y4

@T

� �
q;Y3

� @f1
@Y5

� �
q;Y3;Y4;T

@Y5

@T

� �
q;Y5

; �64�

@f2
@Y3

� �
q;t

� @f2
@Y3

� �
q;Y1;Y2;Y4;Y5;T

� @f2
@Y1

� �
q;Y2;Y3;Y4;Y5;T

@Y1

@Y3

� �
q;T

� @f2
@Y2

� �
q;Y1;Y3;Y4;Y5;T

@Y2

@Y3

� �
q;T

� @f2
@Y4

� �
q;Y1;Y2;Y3;Y5;T

@Y4

@Y3

� �
q;T

� @f2
@Y5

� �
q;Y1;Y2;Y3;Y4;T

@Y5

@Y3

� �
q;T

�65�

@f2
@T

� �
q;Y3

� @f2
@T

� �
q;Y1;Y2;Y3;Y4;Y5

� @f2
@Y1

� �
q;Y2;Y3;Y4;Y5;T

@Y1

@T

� �
q;Y3

� @f2
@Y2

� �
q;Y1;Y3;Y4;Y5;T

@Y2

@T

� �
q;Y3

� @f2
@Y4

� �
q;Y1;Y2;Y3;Y5;T

@Y4

@T

� �
q;Y3

� @f2
@Y5

� �
q;Y1;Y2;Y3;Y4;T

@Y5

@T

� �
q;Y3

: �66�

Despite their deceptive complexity, these expressions become peculiarly simple, as detailed in

Appendix III. With these analytical partial derivatives the procedure for determining temperature and

the ®ve mass fractions is theoretically complete. Therefore a practical implementation utilizes

expressions (52), (53) and (48), (49) to compute Yi; i 6� 3, for a given state �r; e� at each grid point

and associated �Y3; T �. All these variables are then employed to evaluate functions (56) and (57) and

all the partial derivatives (63)±(66) for the Newton-algorithm determination of Y3 and T. The

computational results discussed in Section 9 indicate that this procedure rapidly converges in two or

three iterations and directly yields temperature and the ®ve mass fractions. Pressure is then explicitly

computed using (39).
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8. JACOBIAN PARTIAL DERIVATIVES OF PRESSURE AND TEMPERATURE

As is well known, the convergence of implicit Euler and Navier±Stokes CFD algorithms critically

depends upon accurate and continuous Jacobians of pressure with respect to the state variable q.4

Implicit Navier±Stokes CFD algorithms also require accurate and continuous Jacobians of

temperature with respect to q. This section shows that the developed procedure leads to exact and

smooth pressure and temperature Jacobian partial derivatives on the basis of the partial derivatives of

F�r; e;Q� in (58) and Yi; 14 i4 5, with respect to r and e.
To begin with, an application of the chain rule to the EOS in (6), p � p�r; e�q��, leads to the partial

derivatives of pressure with respect to the ¯ow variable q � fr;m;EgT as

@p

@r

� �
m;E

� @p

@r

� �
e
� @p

@e

� �
r

@e
@r

� �
m;E

� @p

@r

� �
e
� @p

@e

� �
r

1

r2

1

r
Pn
i�1

mimi ÿ E

� �
; �67�

@p

@mi

� �
r;mj;E;i6�j

� @p

@e

� �
r

@e
@mi

� �
r;mj;E;i 6�j

� @p

@e

� �
r
ÿmi

r2

� �
; �68�

@p

@E

� �
r;m
� @p

@e

� �
r

@e
@E

� �
r;m
� @p

@e

� �
r

1

r

� �
: �69�

The corresponding partial derivatives of T are directly obtained by replacing p with T in (67)±(69).

As noted in Sections 6 and 7, equations (48), (49), (52), (53) and (56), (57) asymptotically

approach the perfect gas expressions. Therefore (67)±(69) will converge to the perfect gas partial

derivatives at low temperatures. For the reacting ¯ow case these Jacobian derivatives depend on the

thermodynamic derivatives �@p=@r�e and �@p=@e�r. Similarly, the Jacobian partial derivatives of T

depend on the thermodynamic derivatives �@T=@r�e and �@p=@e�r.

These thermodynamic derivatives of pressure are determined exactly by differentiating the EOS

(39) in the form

@p

@r

� �
e
� T

P5
i�1

Yi

Mi

� r
@T

@r

� �
e

P5
i�1

Yi

Mi

� rT
P5
i�1

1

Mi

@Yi

@r

� �
e
; �70�

@p

@e

� �
r
� r

@T

@e

� �
r

P5
i�1

Yi

Mi

� rT
P5
i�1

1

Mi

@Yi

@e

� �
r
; �71�

which shows the dependence on the thermodynamic derivatives of both T and mass fractions

Yi; 14 i4 5, with respect to r and e. These thermodynamic derivatives are determined through

system (58) as follows.

Considering that Q � Q�r; e�, the differential of both sides of expression (58) yields

@F

@Q

� �
r;e

@Q

@r

� �
e
� @F

@r

� �
Q;e

" #
dr� @F

@Q

� �
r;e

@Q

@e

� �
r
� @F

@e

� �
Q;r

" #
de � 0: �72�

This constitutes a linear combination on the linearly independent differentials dr and de, holding true

if and only if their coef®cients independently vanish, which de®nes the two linear systems

@Q

@r

� �
e
� ÿ @F

@Q

� �
r;e

" #ÿ1
@F

@r

� �
Q;e
;

@Q

@e

� �
r
� ÿ @F

@Q

� �
r;e

" #ÿ1
@F

@e

� �
Q;r
: �73�
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The Jacobian in both of these expressions is invariant and coincides with that in (59) at convergence,

while the derivatives �@F=@r�Q;e and �@F=@e�Q;r are analytically determined, as detailed in Appendix

IV. Expressions (73) thus directly supply the partial derivatives

@Y3

@r

� �
e
;

@Y3

@e

� �
r
;

@T

@r

� �
e
;

@T

@e

� �
r
: �74�

The analogous partial derivatives for Yi; i 6� 3, are then determined using the exact partial derivatives

of expressions (52) and (53), as detailed in Appendix V.

With these analytical developments the procedure for determining the Jacobian partial derivatives

of pressure and temperature is theoretically complete. A practical implementation then utilizes

expressions (70), (71) and (67)±(69) for numerical computations.

9. COMPUTATIONAL RESULTS

The procedure presented in the previous sections is speci®cally designed for coupling at each grid

point the solution of the thermodynamic system (39)±(45) with Euler and Navier±Stokes CFD

algorithms. For the purpose of documenting performance, the procedure has been used to generate the

thermodynamic properties of equilibrium air by varying the density r and mass-speci®c internal

energy e over speci®ed wide ranges corresponding to a temperature range of 8000 K and pressure

range corresponding to a reference increase in altitude of over 30,000 m, i.e. 100,000 ft, above sea

level. For direct comparison of results with independently published data, the computational

predictions are then presented in sets of isobars, showing the variation of temperature versus inverse

density and mass-speci®c internal energy and the distribution of the other thermodynamic variables

versus temperature. The results are presented in terms of dimensional temperature, in degrees Kelvin,

whereas the remaining thermodynamic variables are shown in non-dimensional form following

expressions (30) in Section 5, with representative temperature, density and pressure set equal to the

U.S. standard atmosphere values of these variables at sea level.

Figure 1 shows the variation of temperature versus inverse density, i.e. speci®c volume.

Temperature is plotted versus speci®c volume 1=r, because from the EOS in (7), temperature

increases linearly with 1=r for a perfect gas. This convenient representation clearly shows, the

difference between perfect and reacting air predictions. For a given density, hence speci®c volume,

the chart illustrates the well-known incorrect high-temperature predictions of the perfect gas model,

which become even more unrealistic as 1=r, hence T, increases. As temperature increases further, the

curves tend to approach straight lines, because at completion of the chemical reactions involved, the

equilibrium air begins to behave for a certain range of temperature as a perfect gas of atomic oxygen

and nitrogen. Overall, the temperature distributions in the ®gure remains continuous and smooth.

Another clear indication of the signi®cant differences between perfect and reacting air behaviour is

provided by Figure 2, which correlates with Figure 1 and presents the variation of temperature versus

mass-speci®c internal energy. For low energies no chemical reactions occur, nor are the vibrational

modes fully excited. Consequently, temperature remains independent of pressure and increases

linearly with internal energy in this range. This correct trend follows the perfect gas TE in (7), which

shows independence of pressure and a constant speci®c heat for the constant slope in the curve. Since

temperature is a measure of the molecular kinetic energy mode,8 further increases in energy,

accompanied by chemical reactions, reduce the rise in temperature in comparison with the perfect air

case, because not all the internal energy corresponds to molecular kinetic energy. The larger e, the

greater is the discrepancy between perfect and reacting air predictions. As the graphs show, the rise in
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temperature is further retarded by a decrease in pressure, which increases the rate of dissociations and

thus further reduces the increase in molecular kinetic energy. For continuing increase of internal

energy the curves then indicate a diminishing dependence on pressure and concurrent convergence

towards a single straight line. This results from completion of the chemical reactions; hence the

equilibrium air behaves for a certain range of energies as a perfect gas of atomic oxygen and nitrogen

with pressure-independent constant speci®c heat, for the constant slope in the corresponding curve.

The distributions versus temperature of species mole fractions Xi � �Yi=Mi�=�
P5

j�1 Yj=Mj� are

presented in Figure 3.

At p � 1 atm the dissociation of molecular oxygen begins above 2000 K and is virtually complete

above 4000 K; the dissociation of molecular nitrogen begins above 4000 K, when that of oxygen

completes, and is virtually complete over 9000 K; nitric oxide begins to form at above 2000 K and its

Fig. 1. Temperature versus 1=r

Fig. 2. Temperature versus e
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mole fraction increases, reaches a peak at about 3500 K and then decreases. These features and all the

p� 1 atm curves virtually coincide with the results reported in Reference 8. Furthermore, Reference 8

con®rms the correctness of the qualitative shift of the mole fraction curves observed in the ®gure. A

decrease in pressure favours dissociations; they can thus initiate at comparatively lower temperatures,

which explains the shift to the left of the mole fraction curves. The observed decrease in oxygen and

nitric oxide mole fractions, the ratio of species moles and mixture moles, is not so much due to a

decrease in the number of atoms and molecules of these species, but rather to a drastic increase of the

total number of mixture moles due to the rapid dissociation of molecular nitrogen. The results

reported in Reference 10 then indicate that electrons and ionic species are virtually absent, since their

mole fractions are less than 0�005 for T < 8000 K, which justi®es the selection of a neutral reacting

air model for this temperature range.

Figures 4 and 5 present the thermodynamic partial derivatives of temperature, �@T=@r�e and

�@T=@e�r; versus temperature. For low temperatures, �@T=@r�e has to vanish, since temperature

remains constant for ®xed e, according to the perfect air TE in (7). As temperature increases, the

presence of chemical dissociations induces a strong dependence of T and �@T=@r�e on r, because an

increase in mixture density hampers dissociations and thus increases the molecular kinetic energy by

an amount that for ®xed e would have been otherwise expended for the reactions. This effect is

accentuated by a dissociation-favouring pressure decrease. As temperature increases further,

however, the dependence of �@T=@r�e on T rapidly decreases, because at completion of the chemical

reactions the internal energy depends on temperature, but no longer on density, and for constant e it

follows that �@T=@r�e � 0 in these conditions.

The variation of �@T=@e�r versus T directly correlates with the variation of T versus e and mole

fractions versus T. Even before chemical dissociations begin, this derivative is seen to decrease, as

determined by the non-linear increase of the vibrational energy, which equals the translational kinetic

energy at equilibrium. Therefore temperature, a measure of one mode of molecular energy among the

translational, rotational and vibrational modes, increases less rapidly than e, the sum of all the

molecular energy modes. As the chemical reactions progress, they require increasing amounts of

energy that will not be present as kinetic energy, hence �@T=@e�r decreases further.

As the peak in nitric oxide mass fraction is reached, an increase in internal energy contributes to a

proportional increase in molecular kinetic energy, which explains the increase in �@T=@e�r until a

Fig. 3. Mole fractions versus temperature
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state where a further increase in temperature initiates the dissociations of molecular nitrogen. This

dissociation will then require increasing amounts of energy that will not be present as kinetic energy,

hence �@T=@e�r begins to decrease again. As the chemical dissociations near completion, an increase

in e induces a proportional increase in molecular kinetic energy, which explains the renewed increase

in �@T=@e�r. A thermodynamic state is then reached where the reactions are complete, the mixture

begins to behave as perfect air, within an appropriate range of T, and thus �@T=@e�r becomes equal to

a constant, corresponding to the inverse of a speci®c heat. It is important to observe that for both

derivatives the procedure generated smooth results.

Finally, Figures 6 and 7 present the variations of thermodynamic partial derivatives of pressure

�@p=@r�e and �@p=@e�r, versus temperature. The kinetic-theory interpretation of pressure as collisional

variation of linear momentum8 explains these variations. Concerning the constant-density derivative

Fig. 4. �@T=@r�e versus temperature

Fig. 5. �@T=@e�r versus temperature
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�@p=@e�r, as temperature increases and thus the chemical dissociations progress, the molecular kinetic

energy, hence molecular linear momentum, will increase less rapidly than e and consequently this

thermodynamic derivative of pressure will decrease. For a ®xed e, conversely, as temperature

increases and thus the chemical dissociations progress, an increase in mixture density corresponds to

more species involved in collisions, which explains the increase in �@p=@r�e. This thermodynamic

derivatives varies linearly for low temperatures, because for a perfect gas, hence from (8), this

derivative equals e, which from (7) increases linearly with temperature. As temperature increases, the

reacting air values of this derivative are greater than those for a perfect air, because the chemical

reactions lead to more colliding species than in the perfect air case. For both derivatives a

dissociation-favouring decrease in pressure then further reduces the increase in molecular kinetic

energy and increases the number of colliding species, which explains the observed respective

Fig. 6. �@p=@r�e versus temperature

Fig. 7. �@p=@e�r versus temperature
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variations of these derivatives with respect to pressure. Worthy of note also for these two derivatives

is that the procedure generated smooth results.

10. CONCLUDING REMARKS

The procedure detailed in this paper directly generate pressure, temperature and mass and mole

fractions as well as their thermodynamic and Jacobian partial derivatives for ®ve-species neutral

equilibrium air. Especially designed for explicit and implicit CFD algorithms, the procedure

algebraically reduces the six-equation chemical equilibrium thermodynamic system and explicitly

expresses four variables in terms of nitric oxide mass fraction and temperature. These two variables

are then numerically determined by solving the internal energy and nitric oxide mass action equations

through a Newton method solution, which is observed to converge in two to three iterations, for these

two equations. The procedure then exactly determines the partial derivatives of pressure, temperature

and mass fractions analytically.

All the computational results over a temperature range of 8000 K and pressure range corresponding

to an increase in altitude of over 30,000 m (100,000 ft) above sea level are physically meaningful,

while the predicted distributions of mole fractions for the model ®ve species agree with independent

published results. In particular, reference to the results in Reference 10 con®rms that a neutral

reacting air model remains accurate for temperatures below 8000 K. The thermodynamic properties

so generated, including the important thermodynamic partial derivatives of pressure and temperature,

are then observed to remain continuous and smooth. These results therefore support the procedure as

an attractive alternative to incorporate the thermodynamic properties of reacting equilibrium air in

Euler and Navier±Stokes CFD algorithms.
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APPENDIX I: CHEMICAL AND THERMODYNAMICS PARAMETERS

The molecular masses for the chosen ®ve species are9

M1 � 15�99940 kg kg-molÿ1;

M2 � 14�00674 kg kg-molÿ1

M3 � 30�00614 kg kg-molÿ1

M4 � 31�99880 kg kg-molÿ1;

M5 � 28�01348 kg kg-molÿ1;

�75�

where M3 � M1 �M2;M4 � 2M1 and M5 � 2M2. In SI units the universal gas constant is

r � 8314 J kg-molÿ1 Kÿ1: �76�
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For the selected ®ve species the thermodynamic parameters in (21) are expressed as7,8

yv
3 � 2740 K; yv

4 � 2270 K; yv
5 � 3390 K; �77�

h0
1 � 29;750

r

M1

J kgÿ1; h0
2
� 56;500

r

M2

J kgÿ1; h0
3 � 10; 791�23871 � � � r

M3

J kgÿ1: �78�

Further, each cvi
in (21) is determined as9

cv1
� 3

2

r

M1

J kgÿ1 Kÿ1; cv2
� 3

2

r

M2

J kgÿ1 Kÿ1;

cv3
� 5

2

r

M3

J kgÿ1 Kÿ1; cv4
� 5

2

r

M4

J kgÿ1 Kÿ1; cv5
� 5

2

r

M5

J kgÿ1 Kÿ1: �79�

These expressions result from the kinetic theory of gases8 dictating that a monoatomic gas such as O

possesses three independent energy absorption mechanisms (degrees of freedom) while a diatomic

gas such as N2 has ®ve such degrees.

The internal energy equation (33) is simpli®ed as

~e � ~T
P5
i�1

cvi

Ma

r

� �
Yi �

P5
i�3

Yi

yv
i

gm2
r T1

� �
1

Mi

exp
yv

i

gm2
r T1

� �
1

~T

� �
ÿ 1

�P3
i�1

Yi
~h0

i : �80�

The ®nal form (34) is thus obtained by virtue of the expressions

~cv1
� 3

2

1

~M1

; ~cv2
� 3

2

1

~M2

; ~cv3
� 5

2

1

~M3

; ~cv4
� 5

2

1

~M4

; ~cv5
� 5

2

1

~M5

�81�

for each speci®c heat,

~yv
3 �

2740

gm2
r T1

; ~yv
4 �

2270

gm2
r T1

; ~yv
5 �

3390

gm2
r T1

�82�

for each vibrational temperature and

~h0
1 �

29;750

gm2
r T1 ~M1

; ~h0
2 �

56;500

gm2
r T1 ~M2

; h0
3 �

10;791�23871 . . .

gm2
r T1 ~M3

�83�

for each formation enthalpy, which collectively indicates that (30) can signi®cantly scale down these

parameters.

APPENDIX II: CHEMICAL EQUILIBRIUM FUNCTIONS

While the procedure developed to solve system (39)±(45) is valid for arbitrary forms of equilibrium

functions Ki�T �; i � 1; 2; 3, the numerical results presented in Section 9 were generated using the

speci®c expressions of Ki�T � reported in References 5 and 6. These expressions are

Ki�T � � exp�Ai
1=Z � Ai

2 � Ai
3 log�Z� � Ai

4Z � Ai
5Z2�; i � 1; 2; �84�

K3�T � � exp�Ai
1 � Ai

2Z � Ai
3Z2 � Ai

4Z3 � Ai
5Z4�; �85�

where Z� 10,000=T and Ai
j are constant coef®cients. Using an asymptotic analysis, the coef®cients

A1
5 and A3

5 have been slightly modi®ed from those in References 5 and 6 to ensure a smooth
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asymptotic convergence of the equilibrium air system (39)±(45) to either the perfect gas equation of

state at lower temperatures or to the equation of state for an atomic-species gas mixture at higher

temperatures. It was then observed that the difference between the equilibrium functions with original

and modi®ed coef®cients remained neglibible in the temperature range 6004 T 4 8000 K.

According to (26)±(28), asymptotic convergence is achieved if Ki�T �; i � 1; 2; 3, approach zero at

lower temperatures, since Y1; Y2 and Y3 vanish in this temperature range. Furthermore, K1�T � and

K2�T � have to increase monotonically at higher temperatures, since Y4 and Y5 vanish at these

temperatures. Conversely, K3�T � has to remain bounded at higher temperatures as a suf®cient

condition for attaining from (28) a vanishing Y3. The corresponding coef®cients Ai
j for these

equilibrium functions are given in Table I.

The equilibrium functions (84) and (85) are compactly expressed as

Ki�T � � exp�Fi�T ��: �86�
Consequently, the derivative of Ki�T � with respect to T is cast as

dKi�T �
dT

� exp�Fi�T ��
dFi�T �

dT
� Ki

dFi

dT
: �87�

In (43)±(45) the non-dimensional equilibrium functions ~Ki� ~T � corresponding to (84) and (85) follow

from inspection of (36)±(38) and directly depend upon ~T by expressing the variable Z in (84) and (85)

as

Z � 10;000

T
� 10;000

gm2
r T1

� �
gm2

r T1
T

� �
�

�T

~T
; �T � 10;000

gm2
r T1

; �88�

where �T can be made substantially smaller than 10,000.

APPENDIX III. JACOBIAN DERIVATIVES FOR NEWTON'S ITERATION

The Jacobian partial derivatives (63)±(66) depend upon the four derivatives

@Y4

@Y3

� �
q;T

;
@Y4

@T

� �
q;Y3

;
@Y5

@Y3

� �
q;T

;
@Y5

@T

� �
q;Y3

; �89�

which are directly computed using (52) and (53).

The partial derivative of (52) is

@Y4

@Y3

� �
q;T

� ÿa13 �
a13M 2

1 C1

2�M 2
1 C1�a10 ÿ a13Y3 �M 2

1 C1=4��1=2
: �90�

The denominator is then re-expressed using (52) itself, yielding

@Y4

@Y3

� �
q;T

� ÿa13 1� M 2
1 C1

2�Y4 ÿ a10 � a13Y3 ÿM 2
1 C1=4�

� �
: �91�

Table I. Coef®cients for equilibrium functions (84) and (85)

i Ai
1 Ai

2 Ai
3 Ai

3 Ai
5

1 0�55388 9�367754721 1�77630 ÿ6�5720 ÿ0�031445
2 1�53510 8�513844721 1�29930 ÿ11�4940 ÿ0�006980
3 2�13500 ÿ1�170000000 ÿ0�38900 0�0610 ÿ0�007000
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Next (42) is inserted in the denominator, leading to

@Y4

@Y3

� �
q;T

� ÿa13 1ÿ M 2
1 C1

2Y1 �M 2
1 C1

� �
� ÿ 2a13Y1

2Y1 �M 2
1 C1

: �92�

As a concluding step, M 2
1 C1 is replaced by (43), yielding

@Y4

@Y3

� �
q;T

� ÿ 2a13Y1Y4

Y 2
1 � 2Y1Y4

� ÿ 2a13Y4

Y1 � 2Y4

: �93�

This simple expression only depends upon the mass fractions Y1 and Y4 and never becomes

indeterminate, because the denominator remains constantly positive since Y1 and Y4 never vanish

simultaneously. The partial derivative of Y5 with respect to Y3 is analogously determined as

@Y5

@Y3

� �
q;T

� ÿ 2a23Y5

Y2 � 2Y5

: �94�

The same procedure is then employed to develop the partial derivative of Y4 with respect to T as

@Y4

@T

� �
q;Y3

� M2
1

2

@C1

@T

� �
r
ÿM 2

1 C1�a10 ÿ a13Y3 �M 2
1 C1=2�dF1=dT

2�M 2
1 C1�a10 ÿ a13Y3 �M 2

1 C1=4��1=2

� M2
1 C1

2

dF1

dT
1ÿ a10 ÿ a13Y3 �M 2

1 C1=2

�M2
1 C1�a10 ÿ a13Y3 �M 2

1 C1=4��1=2
 !

� M2
1 C1

2

dF1

dT
1� Y1 � Y4 �M 2

1 C1=2

Y4 ÿ a10 � a13Y3 ÿM 2
1 C1=2

� �
� M2

1

2

dF1

dT
1ÿ Y1 � Y4 �M 2

1 C1=2

Y1 �M2
1 C1=2

� �
� ÿM2

1 C1

2

dF1

dT

Y4

Y1 �M 2
1 C1=2

� ÿ Y4

�Y 2
1 =�2Y4�� � 1

dF1

dT

� ÿ Y1Y4

Y1 � 2Y4

dF1

dT
: �95�

The partial derivative of Y5 with respect to T is analogously expressed as

@Y5

@T

� �
q;Y3

� ÿ Y2Y5

Y2 � 2Y5

dF2

dT
: �96�

These expressions are not indeterminate, since their denominator never vanishes. Using these

expressions, the remaining mass fraction partial derivatives in (63)±(66),

@Y1

@Y3

� �
q;T

;
@Y1

@T

� �
q;Y3

;
@Y2

@Y3

� �
q;T

;
@Y2

@T

� �
q;Y3

; �97�
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are directly computed via (48) and (49) as

@Y1

@Y3

� �
q;T

� @Y1

@Y3

� �
Y4

� @Y1

@Y4

� �
Y3

@Y4

@Y3

� �
q;T

� ÿa13 �
2a13Y4

Y1 � 2Y4

� ÿ a13Y1

Y1 � 2Y4

; �98�

@Y1

@T

� �
q;Y3

� @Y1

@Y4

� �
Y3

@Y4

@T

� �
q;Y3

� ÿ ÿ Y1Y4

Y1 � 2Y4

� �
dF1

dT
� Y1Y4

Y1 � 2Y4

dF1

dT
; �99�

@Y2

@Y3

� �
q;T

� @Y2

@Y3

� �
Y5

� @Y2

@Y5

� �
Y3

@Y5

@Y3

� �
q;T

� ÿa23 �
2a23Y5

Y2 � 2Y5

� ÿ a23Y2

Y2 � 2Y5

; �100�

@Y2

@T

� �
q;Y3

� @Y2

@Y5

� �
Y3

@Y5

@T

� �
q;Y3

� ÿ ÿ Y2Y5

Y2 � 2Y5

� �
dF2

dT
� Y2Y5

Y2 � 2Y5

dF2

dT
: �101�

Further, the partial derivatives

@f1
@Y3

� �
q;Y4;Y5;T

;
@f1
@Y4

� �
q;Y3;Y5;T

;
@f1
@Y5

� �
q;Y3;Y4;T

;
@f1
@T

� �
q;Y3;Y4;Y5

�102�

are determined from (56) as

@f1
@Y3

� �
q;Y4;Y5;T

� 1�0; �103�

@f1
@Y4

� �
q;Y3Y5;T

� ÿ M3Y5C3

2�Y4Y5C3�1=2
� ÿM3�Y4Y5C3�1=2

2Y4

� ÿ Y3 ÿ f1
2Y4

; �104�

@f1
@Y5

� �
q;Y3;Y4;T

� ÿ M3Y4C3

2�Y4Y5C3�1=2
� ÿM3�Y4Y5C3�1=2

2Y5

� ÿ Y3 ÿ f1
2Y5

; �105�

@f1
@T

� �
q;Y3;Y4;Y5

� ÿM3Y4Y5C3 dF3=dT

2�Y4Y5C3�1=2
� ÿM3�Y4Y5C3�1=2

2

dF3

dT
� ÿ Y3 ÿ f1

2

dF3

dT
: �106�

The partial derivatives

@f2
@Y3

� �
q;Y1;Y2;Y4;Y5;T

;
@f2
@Y1

� �
q;Y3;Y2;Y4;Y5;T

;
@f2
@Y2

� �
q;Y3;Y1;Y4;Y5;T

; �107�

@f2
@Y4

� �
q;Y3;Y1;Y2;Y5;T

;
@f2
@Y5

� �
q;Y3;Y1;Y2;Y4;T

;
@f2
@T

� �
q;Y3;Y1;Y2;Y4;Y5

�108�
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are then determined from (57) as

@f2
@Y3

� �
q;Y1;Y2;Y4;Y5;T

� ÿTcv3
ÿ yv

3=M3

exp�yv
3=T � ÿ 1

ÿ h0
3; �109�

@f2
@Y1

� �
q;Y3;Y2;Y4;Y5;T

� ÿTcv1
ÿ h0

1; �110�

@f2
@Y2

� �
q;Y3;Y1;Y4;Y5;T

� ÿTcv2
ÿ h0

2; �111�

@f2
@Y4

� �
q;Y3;Y1;Y2;Y5;T

� ÿTcv4
ÿ yv

4=M4

exp�yv
4=T � ÿ 1

; �112�

@f2
@Y5

� �
q;Y3;Y1;Y2;Y4;T

� ÿTcv5
ÿ yv

5=M5

exp�yv
5=T � ÿ 1

; �113�

@f2
@T

� �
q;Y3;Y1;Y2;Y4;Y5

� ÿP5
i�1

cvi
Yi ÿ

P5
i�3

Yi�yv
i =Mi��yv

i =T
2� exp�yv

i =T �
�exp�yv

i =T � ÿ 1�2 : �114�

Consequently, the expressions for the partial derivatives (63)±(66) of f1 and f2 with respect to Y3 and

T are

@f1
@Y3

� �
q;T

� 1� �Y3 ÿ f1�
a13

Y1 � 2Y4

� a23

Y2 � 2Y5

� �
; �115�

@f1
@T

� �
q;Y3

� Y3 ÿ f1
2

Y1

Y1 � 2Y4

dF1

dT
� Y2

Y2 � 2Y5

dF2

dT
ÿ dF3

dT

� �
; �116�

@f2
@Y3

� �
q;T

�ÿ Tcv3
ÿ yv

3=M3

exp�yv
3=T � ÿ 1

ÿ h0
3 � �Tcv1

� h0
1�

a13Y1

Y1 � 2Y4

� �Tcv2
� h0

2�
a23Y2

Y2 � 2Y5

� Tcv4
� yv

4=M4

exp�yv
4=T � ÿ 1

� �
2a13Y4

Y1 � 2Y4

� Tcv5
� yv

5=M5

exp�yv
5=T � ÿ 1

� �
2a23Y5

Y2 � 2Y5

; �117�

@f2
@T

� �
q;Y3

� ÿP5
i�1

cvi
Yi ÿ

P5
i�3

Yi�yv
i =Mi��yv

i =T
2� exp�yv

i =T �
�exp�yv

i =T � ÿ 1�2 ÿ �Tcv1
� h0

1�
Y1Y4

Y1 � 2Y4

dF1

dT

ÿ �Tcv2
� h0

2�
Y2Y5

Y2 � 2Y5

dF2

dT

� Tcv4
� yv

4=M4

exp�yv
4=T � ÿ 1

� �
Y1Y4

Y1 � 2Y4

dF1

dT
� Tcv5

� yv
5=M5

exp�yv
5=T � ÿ 1

� �
Y2Y5

Y2 � 2Y5

dF2

dT
:

�118�
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APPENDIX IV: PARTIAL DERIVATIVES OF f1 AND f2 WITH RESPECT TO r AND e

The partial derivatives in (98),

@F

@r

� �
Q;e
;

@F

@e

� �
Q;r
;

are expressed as

@f1
@r

� �
Y3;T ;e

� @f1
@Y4

� �
q;Y3;Y5;T

@Y4

@r

� �
Y3;T

� @f1
@Y5

� �
q;Y3;Y4;T

@Y5

@r

� �
Y3;T

; �119�

@f1
@e

� �
Y3;T ;r

� 0�0; �120�

@f2
@r

� �
Y3;T ;e

� @f2
@Y1

� �
q;Y2;Y3;Y4;Y5;T

@Y1

@r

� �
Y3;T

� @f2
@Y2

� �
q;Y1;Y3;Y4;Y5;T

@Y2

@r

� �
Y3;T

� @f2
@Y4

� �
q;Y1;Y2;Y3;Y5;T

@Y4

@r

� �
Y3;T

� @f2
@Y5

� �
q;Y1;Y2;Y3;Y4;T

@Y5

@r

� �
Y3;T

; �121�

@f2
@e

� �
Y3;T ;r

� @f2
@e

� �
Y1;Y2;Y3;Y4;Y5;T ;r

� 1�0: �122�

These expressions depend on the partial derivatives

@f1
@Yi

� �
q;Yj;T

;
@f2
@Yi

� �
q;Yj;T

; i 6� j; �123�

@Y4

@r

� �
Y3;T

;
@Y5

@r

� �
Y3;T

;
@Y1

@r

� �
Y3;T

;
@Y2

@r

� �
Y3;T

: �124�

Expressions (123) are presented in Appendix III, while expressions (124) are determined through a

procedure similar to that in (90) as follows. From (52) the partial derivative of Y4 with respect to r is
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The partial derivative of Y5 with respec to r is analogously expressed as
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The partial derivatives of Y1 and Y2 directly follow from (48) and (49) as
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With these expressions the partial derivatives (119)±(122) become
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APPENDIX V: PARTIAL DERIVATIVES OF Y1; Y2; Y4 AND Y5 WITH RESPECT TO r AND e

The thermodynamic partial derivatives of pressure, (70) and (71), depend on the partial derivatives
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Given the functional relations (54) and (55) for Yi; i 6� 3, these derivatives are expressed as
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where the partial derivatives of Y4 and Y5 with respect to Y3 and T are detailed in Appendix III. Hence

expressions (133)±(136) are cast as
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With these expressions and using (48) and (49), the partial derivatives
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are developed as
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